A primer on exterior differential calculus

نویسندگان

  • D. A. Burton
  • David A. Burton
چکیده

A pedagogical application-oriented introduction to the calculus of exterior differential forms on differential manifolds is presented. Stokes’ theorem, the Lie derivative, linear connections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their traditional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes’ and divergence theorems replaced by the more powerful exterior expression of Stokes’ theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional machinery, are stressed throughout the article.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exterior Calculus: Economic Profit Dynamics

A mathematical model for the Dynamics of Economic Profit is constructed by proposing a characteristic differential oneform for this dynamics (analogous to the action in Hamiltonian dynamics). After processing this form with exterior calculus, a pair of characteristic differential equations is generated and solved for the rate of change of profit P as a function of revenue R (t) and cost C (t). ...

متن کامل

Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds

W e develop exterior calculus approaches for partial differential equations on radial manifolds. We introduce numerical methods that approximate with spectral accuracy the exterior derivative d, Hodge star ?, and their compositions. To achieve discretizations with high precision and symmetry, we develop hyperinterpolation methods based on spherical harmonics and Lebedev quadrature. We perform c...

متن کامل

Two - Parameter Differential Calculus on the h - Exterior Plane

We construct a two-parameter covariant differential calculus on the quantum h-exterior plane. We also give a deformation of the two-dimensional fermionic phase space. This work was supported in part by T. B. T. A. K. the Turkish Scientific and Technical Research Council. E-mail address: [email protected] E-mail address: [email protected]

متن کامل

Numerical method for Darcy flow derived using Discrete Exterior Calculus

We derive a numerical method for Darcy flow, hence also for Poisson’s equation in first order form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is its discretization on simplicial complexes such as triangle and tetrahedral meshes. We start by rewriting the governing equations of Darcy flow using the language of ...

متن کامل

A Proposal for a Differential Calculus in Quantum Mechanics

In this paper, using the Weyl-Wigner-Moyal formalism for quantum mechanics, we develop a quantum-deformed exterior calculus on the phase-space of an arbitrary hamiltonian system. Introducing additional bosonic and fermionic coordinates we construct a supermanifold which is closely related to the tangent and cotangent bundle over phase-space. Scalar functions on the super-manifold become equival...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004